Menofia University
Faculty of Engineering Shebien El-kom
Basic Engineering Sci. Department.
First semester Examination, 2017-2018
Date of Exam : $13 / 1 / 2018$

Subject : Complex Analysis . Code: BES 505
Year : Diploma
Time Allowed : 3 hrs
Total Marks: 100 Marks

Answer the following questions

Question 1 (30 MARKS)

(A) Suppose we choose the principal branch of $\sin ^{-1} z$ to be that one for which $\sin ^{-1 \cdot} 0=0$. Prove that $\sin ^{-1} z=\frac{1}{i} \ln \left(i z+\sqrt{\left.1-z^{2}\right)}\right.$ (5 Marks)
(B) Let $w=f(z)=z^{2}$. Find the values of w that correspond to

$$
\text { (a) } z=-2+i \text { and (b) } z=1-3 i
$$

and show how the correspondence can be represented graphically.
(C) Solve the partial differential equation $\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}=x^{2}-y^{2}$. using complex analysis
(D) (i) Prove that $u=e^{-x}(x \sin y-y \cos y)$ is harmonic.
(ii) Find v such that $f(z)=u+i v$ is analytic.
(iii) Find $f(z)$
(iv) Find the orthogonal trajectories of the family of curves in the $x y$ plane which are defined by $e^{-x}(x \sin y-y \cos y)=\alpha$ where α is a real constant.

Question 2 (40 MARKS)

(A) Evaluate $\int_{(0,3)}^{(2,4)}\left(2 y+x^{2}\right) d x+(3 x-y) d y$ along the parabola

$$
\begin{equation*}
x=2 t, y=t^{2}+3 \tag{5Marks}
\end{equation*}
$$

(B) Evaluate $\int_{c} \bar{z} d z$ from $\mathrm{z}=0$ to $\mathrm{z}=4+2 \mathrm{i}$ along the curve C given by: (5 Marks) the line from $z=0$ to $z=2 i$ and then the from $z=2 i$ to $z=4+2 i$.
(C) Verify Green's theorem in the plane for $\oint_{c}\left(2 x y-x^{2}\right) d x+\left(x+y^{2}\right) d y$ Where C is the closed curve of the region bounded by $y=x^{2}$ and $y^{2}=x$ (IL Marks)
(D) . Evaluate:
(a) $\oint_{c} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)(z-2)} d z, \quad$ (b) $\frac{e^{2 z}}{(z+1)^{4}} d z$ where C is the circle $|z|=3$.
(ID Marks)
(E) Find the residues of

$$
f(z)=\frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)}
$$

at all its poles in the finite plane.

Question 3 (30 MARKS)

(A) Prove that (i) $\int_{0}^{\infty} \frac{\ln \left(x^{2}+1\right)}{x^{2}+1} d x=\pi \ln 2 \quad \int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.
(iii) $\quad \sum_{n=-\infty}^{\infty} \frac{1}{n^{2}+a^{2}}=\frac{\pi}{a}$ coth π a where $a>0$.
(iv) $\frac{1}{1^{a}}-\frac{1}{3^{a}}+\frac{1}{5^{a}}-\frac{1}{7^{a}}+\cdots=\frac{\pi^{2}}{32}$. (15 Marks)
(B) (i) Deter'mine the region of the w plane into which each of the following is mapped by the transformation $w=z^{2}$. (a) First quadrant of the z plane. (b) Region bounded by $x=1, y=1$, and $x+y=1$.
(ii) Find a bilinear transformation that maps points $z=0,-i,-1$ into $w=i, 1,0$, respectively.
(iii) Find a transformation that maps the real axis in the w plane onto the ellipse $\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1$ in the z plane.

This exam measures the following ILOs										
Question Number	Q1-a	Q2-a	Q3-b	Q2-e	Q2-b	Q3-b	Q2-d	Q1-b	Q3-a	Q1-d
Skills			b-ii			b-i				
	Knowledge \&understanding skills				Intellectual Skills			Professional Skills		

With my best wishes
Associate Prof. Dr. Islam M. Eldesoky

