Menofia University Faculty of Engineering Shebien El-kom Basic Engineering Sci. Department. First semester Examination, 2017-2018 Date of Exam : 13 / 1 / 2018

Subject : Complex Analysis . Code: BES 505 Year : Diploma Time Allowed : 3 hrs Total Marks: 100 Marks

Answer the following questions

Question 1 (30 MARKS)

(A) Suppose we choose the principal branch of $sin^{-1} z$ to be that one for	H.
which $sin^{-1} 0 = 0$. Prove that $sin^{-1}z = \frac{1}{i} \ln(iz + \sqrt{1 - z^2})$	(5 Marks)
(B) Let $w = f(z) = z^2$. Find the values of w that correspond to	
(a) $z = -2 + i$ and (b) $z = 1 - 3i$,	r
and show how the correspondence can be represented graphically.	(5 Marks)
(C) Solve the partial differential equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = x^2 - y^2$.using complex	
analysis	(5 Marks)
(D) (i) Prove that $u = e^{-x} (x \sin y - y \cos y)$ is harmonic.	15 Marks)
(ii) Find v such that $f(z) = u + iv$ is analytic.	
(iii) Find $f(z)$	
(iv) Find the orthogonal trajectories of the family of curves in the xy	plane
which are defined by $e^{-x}(x \sin y - y \cos y) = \alpha$ where α is a real contained.	stant.
Question 2 (40 MARKS)	
(A) Evaluate $\int_{(0,3)}^{(2,4)} (2y + x^2) dx + (3x - y) dy$ along the parabola	
$x = 2t, y = t^2 + 3;$	(5 Marks)
(B) Evaluate $\int_{c} \overline{z} dz$ from $z = 0$ to $z = 4 + 2i$ along the curve C given by:	(5 Marks)
the line from $z = 0$ to $z = 2i$ and then the line from $z = 2i$ to $z = 4 + 2i$	i.
(C) Verify Green's theorem in the plane for $\oint_c (2xy - x^2)dx + (x + y^2)dx$	У
Where C is the closed curve of the region bounded by $y = x^2$ and $y^2 = x$	
	(10 Marks)
(D). Evaluate:	
$\int \sin \pi z^2 + \cos \pi z^2 = e^{2z}$	

(E) Find the residues of

1

$$f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$$

at all its poles in the finite plane.

Question 3 (30 MARKS)

(A) Prove that (i)
$$\int_0^\infty \frac{\ln(x^2+1)}{x^2+1} dx = \pi \ln 2$$
 (ii) $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$.

(iii)
$$\sum_{n=-\infty}^{\infty} \frac{1}{n^2 + a^2} = \frac{\pi}{a} \operatorname{coth} \pi a \text{ where } a > 0.$$

(iv)
$$\frac{1}{1^3} - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \dots = \frac{\pi^3}{32}$$
. (15 Marks)

- (B) (i) Determine the region of the w plane into which each of the following is mapped by the transformation $w = z^2$. (a) First quadrant of the z plane. (b) Region bounded by x = 1, y = 1, and x + y = 1.
- (ii) Find a bilinear transformation that maps points z = 0, -i, -1 into w = i, 1, 0, respectively.
- (iii) Find a transformation that maps the real axis in the w plane onto the ellipse $(x^{2}/a^{2}) + (y^{2}/b^{2}) = 1$ in the z plane. (15 Marks)

. This exam measures the following ILOs											
Question Number	Q1-a	Q2-a	Q3-b	Q2-e	Q2-b	Q3-b	Q2-d	Q1-b	Q3-a	Q1-d	
, Skills	13		b-ii			b-i	a				
	Knowledge &understanding skills			Intellectual Skills			Pro	Professional Skills			

With my best wishes

× '''

Associate Prof. Dr. Islam M. Eldesoky

(ID Marks)